Cashew Nut Processing, Part 2 Roasting


The application of heat to the nut releases the nut shell liquid and makes the shell brittle which facilitates the extraction of the kernel when breaking the shell open. Three methods of roasting exist: open pan, drum roasting and the “hot oil”method. The latter is more suitable to medium-scale operations with associated higher equipment costs and viability of CNSL collection.

a. Open pan: An open, mild steel, circular dished pan of around 2 feet in diameter is supported on a basic earth fireplace. When heated, 2-3lbs (1kg) of nuts are placed on the pan at one time and stirred constantly. The CNSL starts to exude and then ignites. This produces a long flame and black smoke. After approximately two minutes, the pan is dowsed and the charred, swollen and brittle nuts are thrown out of the pan. The moisture evaporates quickly leaving the nuts ready for shelling.

b. Drum roasting: The idea of continually feeding the nuts into a rotating drum over a fire developed from the pan method. A slight horizontal slope in the mounting ensures the movement of the nuts through the drum. The drum is pierced so that the flames touch the nuts and the smoke is controlled by a hood and chimney arrangement. The nuts are dowsed using a continuous spray.

This process was further modified by using the heat from the burning CNSL being harnessed to roast the nuts some more. The roaster consists of a contained helical screw which moves the burning nuts at a controlled rate. The design was a distinct improvement, with little fuel being consumed and there being greater control on the roasting time.

“Hot oil” method: The principle employed in this method is that oil-bearing substances i.e. the shells, when immersed in the same oil at high temperature, will lose their oil, thus increasing the volume of the oil in the tank. For this method, conditioning becomes important. The equipment consists of a tank of CNSL heated to a temperature of 185-190°C by a furnace underneath and a wire basket used to hold the nuts for immersion into the tank. The depth of the basket must be sufficient so that the rim remains well above the oil during the roasting. Immersion time can range from 1 ½ to 4 minutes. About 50% of the liquid is extracted from the nuts.

Draining trays are needed at the end of the tank for the roasted nuts to dry and the residue oil can be returned to the tank. Caution must be taken not to heat the tank to over 200°C because at this point polymerization of the CNSL takes place. The temperature can be maintained by continuous firing. The tank should be emptied and cleaned after each day’s roasting. The life of a tank made of an eighth inch thick mild steel plate should exceed one and a half years and can be constructed locally with welding facilities.


The objective of shelling is to produce clean, whole kernels free of cracks. In India, this operation has always been done manually. Other countries have difficulty in competing with the great skill and the low wages of the Indian workers. Therefore, India has enjoyed a virtual monopoly of cashew processing for a long time. Manual shelling is still relevant to the small-scale processor, although a close look at the mechanical option is advisable in all cases.


In the manual shelling process, the nuts are placed on a flat stone and cracked with a wooden mallet. As mentioned above, because of the residue CNSL, wood ash for covering the shells or gloves are required. An average sheller can open one nut in about six seconds or ten nuts per minute. In an eight-hour working day, this amounts to about 4,800 nuts or about 5kg of kernels. At an extraction rate of 24%, this quantity corresponds with about 21kg of raw nuts per day or about 7 tons per year. However, experienced shellers in India can produce around half as much again, with a quality of 90% whole kernels.


The most successful mechanical shellers work on nuts which have previously passed through the “hot oil” process and is detailed under the paragraph “centrifugal shellers”.

A semi-mechanized process that has been used predominantly in Brazil, uses a pair of knives, each shaped in the contour of half a nut. When the knives come together by means of a foot operated lever, they cut through the shell all around the nut, leaving the kernel untouched. Two people work at each table; the first cuts the nuts and the second person opens them and separates the kernel from the shell. Daily production is about 15kg of kernels per team.

The first mechanized shelling system, Oltremare, is also based on two nut-shaped knives. The nuts are brought to the knives on a chain, each nut in the same position to fit between the knives. The nuts are pushed between the knives and cut. The chain itself has to be fed manually. After coming together, the knives make a twisting movement, thus separating the shell halves. The disadvantages of this method are that nuts smaller than 18mm cannot be processed and output is reduced because not all the spaces on the chain can be filled which can count for as much as 10% of the production volume.

The shelling machines of the Cashco system are also chain fed but the nuts are automatically placed in the right position. The shelling device has two knives that cut the sides of the nut and a pin that is wedged into the stalk end of the nut separates the shell halves. The advantage of this system is a fully mechanised operation with an output of about 75% whole kernel quality. Nuts smaller than 15mm cannot be processed.

Centrifugal shellers use a system which is simple and enables a continuous flow. A rotary paddle projects the shells against the solid casing and the impact cracks open the shell without breaking the kernel. All sizes of nuts can be processed by this method, however, it is necessary to grade the nuts into four or so group ranges because a different rotary speed is used for the various size groups. The percentage of whole kernels produced is around 75%. By preparing the shells with grooves and weakening the strength of them before the operation begins, the percentage can be increased. The speed of the rotor can thus be turned down and the risk of damaging the kernels is reduced.


After shelling, shell pieces and kernels are separated and the unshelled nuts are returned to the shelling operation. Usually blowers and shakers are used to separate the lighter shell pieces from the kernels. The greatest problem is to recover small pieces of kernel sticking to the shell. This is usually done manually from a conveyor belt used to carry all the sorted semi-shelled nuts.

source:, photo from


Leave a Reply

Your email address will not be published. Required fields are marked *